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Abstract— Since recent facial landmark localization methods
achieve satisfying accuracy, few of them enable fast inference
speed, which, however, is critical in many real-world facial appli-
cations. Existing methods typically employ complicated network
structure and predict all the key points through uniform compu-
tation, which is inefficient since individual facial part might take
different computation to obtain the best performance. Taking
both accuracy and efficiency into consideration, we propose
the PicassoNet, a lightweight cascaded facial landmark detector
with adaptive computation for individual facial part. Different
from the conventional cascaded methods, PicassoNet integrates
refinement submodules into a single network with group convolu-
tion, where each convolution group predicts landmarks from an
individual facial part. Note that the groups’ structures are flexible
in the training process. Then, a novel grouping search algorithm
is proposed to optimize the group division. With formulating the
optimization as a network architecture search (NAS) problem,
the grouping search adaptively allocates computation to each
group and obtains an efficient structure. In addition, we propose
a boundary-aware loss to optimize along tangent and normal
of facial boundaries, instead of optimizing along horizontal and
vertical as the conventional loss (L2, SmoothL1, WingLoss, and
so on) do. The novel loss improves the joint locations of predicted
keypoints. Experiments on three benchmark datasets AFLW,
300W, and WFLW show that the proposed method runs over 6×
times faster than the state of the arts and meanwhile achieves
comparable accuracy.

Index Terms— Facial landmark localization, learnable group
convolution, network architecture search (NAS).

I. INTRODUCTION

FACIAL landmark localization aims to predict the coor-
dinates of predefined key points for face images, which

plays a critical role in various face analysis tasks, such as face
recognition [1], [2], face manipulation [3], [4], and 3-D face
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Fig. 1. Pipelines of the existing methods and ours. Different from existing
frameworks, we propose to utilize the group convolution to integrate the
refinement submodules into a single network, aiming at achieving adaptive
computation for different facial parts. (a) Single network pipeline. (b) Pipeline
with serial submodules. (c) Pipeline with parallel submodules. (d) Our pipeline
with single local network composed of structurally adaptive submodules. Each
submodule is marked as the area enclosed by the dotted lines.

reconstruction [5], [6]. As a prerequisite component, landmark
localization is requested to achieve not only satisfactory accu-
racy but also high run-time efficiency, especially in mobile
applications. However, most state-of-the-art algorithms are
time-consuming, which need enormous parameters and run in
low efficiency, leading to difficulties in practical deployment.

The overall pipeline of the existing face alignment meth-
ods can be roughly divided into three categories: single
network [2], [7], [8], cascaded network with serial identity
submodules [9], [10], and cascaded network with parallel
identity submodules [11]–[13], as shown in Fig. 1. The
predicted landmarks are computed through uniform structure
in these pipelines. Nevertheless, different regional areas of
face image might differ in requisite computation to achieve
decent accuracy because the number of annotated landmarks
and the shape variation of individual part are quite different.
For instance, human mouth has abundant poses in various
emotions and languages, while human nose is nearly rigid.
Therefore, identity computing structure and complexity are
inflexible and uneconomic for the topic.
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Fig. 2. NME variation along model FLOPs. A metamodel with five con-
volutional layers is trained on 300W, whose FLOPs increases by multiplying
channels. “eye+” is the composite area of eye and eyebrow. The optimal
points (filled markers) cost different FLOPs.

To better analyze the computation on individual area,
we perform a toy experiment about localizing the land-
marks in different facial regions. Given specific facial part
(eye/nose/mouth), models with different widths are trained
and evaluated. The results shown in Fig. 2 indicate that three
facial parts take different floating-point operations per sec-
ond (FLOPs) to achieve the optimal performance. Therefore,
we could assume that: 1) it is a simple task to localize
landmarks for some specific local facial areas and, therefore,
it is unnecessary to take enormous computations at local
refinement stage and 2) submodules of individual facial parts
differ in requisite computation complexity. Surplus FLOPs
might even cause performance degradation.

Motivated by the above observations, we present a
speed–accuracy balanced method, which constructs adaptive
computation for each facial part. A global–local cascaded
network in parallel manner is employed as the backbone,
as shown in Fig. 1(d). In particular, the global network is fed
with an input face image and outputs the initial estimations
of all landmarks. In the local refinement stage, different facial
parts are cropped and recomposed into a single tensor as the
input of the local network, which is a single compact network
that applies group convolution to decompose the input and
handle different facial parts, respectively. This design enables
the proposed local network to flexibly allocate computations
to each facial part by adjusting the grouping hyperparameters
in each convolution layer. Furthermore, to determine the
optimal hyperparameters in group convolutions, we intro-
duce a novel grouping search algorithm, which combines
the differentiable architecture search and parameterized group
convolution. We note the proposed framework as PicassoNet
since the recomposition/decomposition manner is sparked by
Pablo Picasso’s cubism portraitures [such as Seated Woman
(1937) and Portrait of Sabartes (1939)], where facial features
are deconstructed, analyzed, and reassembled.

In addition, we propose decomposing loss (D-Loss), a novel
boundary-aware object function to solve the problem that con-
necting lines of the predicted landmarks do not always fit the
facial boundaries well. Different from conventional regression
losses (L2, SmoothL1 [14], WingLoss [15], and so on) that

measure errors along the horizontal and vertical directions, the
proposed object function optimizes the loss along the tangent
and normal directions of the facial boundaries and rebalances
the contributions from these two directions.

In summary, the main contributions of this article are given
as follows.

1) We present PicassoNet, a region-based cascaded network
for real-time facial landmark localization. PicassoNet
flexibly allocates the computations to different facial
parts in the local refinement stage and thus obtains
decent accuracy with low computation complexity.

2) We propose a grouping search algorithm to optimize
the structure for PicassoNet. The algorithm helps to find
the optimal grouping for each layer in a differentiable
manner, which is equivalent to adaptively allocating
computations to each facial part.

3) We propose D-Loss, a novel regression object function
that measures the loss along the tangent and normal
directions of facial boundaries.

4) On mainstream datasets including AFLW [16],
300W [17], and WFLW [7], the proposed PicassoNet
achieves comparable performance and runs over 6×
times faster than the state of the arts, e.g., it takes about
24.1 ms per image on CPU (i7-8700 at 3.20 GHz).
When implemented with specialized mobile framework,
it only needs 7.1 ms on arm (Apple A10 Fusion at
1.30 GHz).

II. RELATED WORKS

A. 2-D Facial Landmark Localization

Recent developments on facial landmark localization mainly
focus on designing network structure or objective function
and introducing extra data or annotations. The overall struc-
ture of the existing methods can be roughly divided into
three categories: single network, cascaded network with serial
submodules, and cascaded network with parallel submodules.
As for the single network pipeline, Wu et al. [7], Bulat
and Tzimiropoulos [18], and Yang et al. [19] employed a
stacked hourglass network, which was at first proposed to
solve the human pose estimation problem [20]. Bulat and
Tzimiropoulos [18] proposed FAN, predicting facial land-
marks with hourglass structure for the first time. Yang et al.
[19] introduced supervised face transformation before CNN
backbone to align the input face images. Zhu et al. [21]
appended three close-knit CNN modules after the backbone to
solve the occlusion problem. Also, Wang et al. [22] proposed
HRNet to exploit multiresolution representation to locate land-
marks. These methods, roughly sketched in Fig. 1(a), generally
yield satisfying accuracy, but enormous parameters and large
feature map resolution seriously affect the run-time speed in
practical applications.

There are also many works employing cascaded net-
works, some of which arrange submodules in a serial way,
as shown in Fig. 1(b). Typically, Kowalski et al. [9] and
Dapogny et al. [10] stacked replicated networks to iteratively
refine the landmark locations, and Merget et al. [23] designed
a global–local context network with kernel convolution and
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Fig. 3. Framework of the proposed PicassoNet. The global network makes coarse predictions at first. Cropped images are concatenated along the channel
dimension as a single tensor. The local network applies four groups to decompose the compound input, marked as G1, G2, G3, and G4. Also, grouping search
helps to find the optimal grouping division. Note that each layer might differ in grouping state, and therefore, the local network looks like a Tetris block
assemble in overall appearance.

dilated convolution to exploit global information. Besides,
it is also effective to arrange the submodules in a parallel
way, as shown in Fig. 1(c), whose global–local architecture
can capture more details with restricted input resolution.
Sun et al. [24] and Zhou et al. [25] fed each subnetwork with
the corresponding input regions. Chandran et al. [13] also
designed a global–local cascaded pipeline in a heatmap regres-
sion and end-to-end manner. Note that the submodules in
cascaded networks share the same structure, which means
that it takes equal computations to predict individual facial
landmark. As a result, identity submodule is detrimental to
improving accuracy and economizing FLOPs.

Object function in facial landmark localization
has also received attention recently. Feng et al. [15]
proposed WingLoss to focus on small regression errors,
Wang et al. [26] designed adaptive WingLoss to balance
loss contribution from foreground and background, and
Lai et al. [27] proposed a normalized mean error (NME)
loss to directly optimize the NME. These objective functions
optimize the training loss from the horizontal and vertical
directions, namely, x- and y-axis directions, which might
lead to the phenomenon that some predicted keypoints shift
jointly, though the numerical value of the conventional loss
is tiny.

Some works have proved that extra data or annota-
tion contributes to improving the landmark accuracy. For
instance, Dong et al. [28] introduced a generative adverbial
network (GAN) to augment the dataset, and Dong and
Yang [29] employed a teacher–student framework and uti-
lized pseudo annotations to improve the performance. With
the help of landmark visibility annotations, Kumar et al. [8]
investigated to model the uncertainty and visibility learning to
improve the performance.

B. Learnable Group Convolution

Group convolution has shown its capability of acceler-
ating deep models in recent efficient networks, such as

MobileNet [30], [31] and ShuffleNet [32], [33]. Beyond the
conventional even and fixed partition, some recent works
investigate learnable grouping. FLGC [34] parameterizes
group convolution and formulates a differentiable optimiza-
tion, but the training is unstable and severely sensitive to
initialization, because its softmax relaxation shields the non-
maximum paths and extremely shrinks the search space.
Zhang et al. [35] denoted the group convolution with Kro-
necker product, while whose representation space contains
many duplicate instances and lacks some specific instances.
For instance, a square matrix whose number of rows (columns)
is prime cannot be decomposed via the Kronecker product.
In this work, the proposed grouping search method tackles
the existing problems, formulating a complete search space
and obtaining a better group partition. Besides, each group of
PicassoNet is responsible for a specific facial region, which has
a precise physical meaning. The discussed works, including
this work, treat learnable grouping as a continuous architecture
search process according to [36].

III. METHODOLOGY

A. System Overview

The proposed PicassoNet consists of a global network and
a local network, as shown in Fig. 3. Given a downscaled input
face image I1, the global network holistically predicts the
coordinate of all landmarks, which is denoted as S1. Contour
points of S1 go directly as the final output, while other points
instruct to crop local area from the original high-resolution
image I0. The cropped regions capture more details than
I1 while still in a low resolution. With this design, globally
localizing landmarks is decomposed into regional regression
problems. Besides, S1 can help to tackle large poses and
exaggerated expressions, which further eases the task.

In respect of the local refinement stage, we crop out four
facial parts according to S1, namely, left eye, right eye,
nose, and mouth. Note that the eye area covers the eyebrow.
The cropped facial parts are converted to grayscale and
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concatenated along the channel dimension, composing input
tensor I2 in Fig. 3. Fed with the reconstructed input tensor,
a single local network rather than conventional replicated
subnetworks conducts local regression on these facial parts.
In particular, the local network adopts group computation
for convolution layer and linear layer. Therefore, regional
regression is isolated with each other. We further design a
grouping search algorithm to optimize the grouping state for
each layer, which can be viewed as an architecture search
process. The final outputs combine contour points from S1 and
local area points from S2. Note that both global network and
local network use extremely downscaled inputs and coordinate
regression project head, which runs in high efficiency but
generally performs weakly. While with the proposed grouping
search algorithm exploiting network capacity, the lightweight
design is able to obtain decent accuracy compared with
existing complicated models.

B. Generalizing Regional Submodules

As observed from Fig. 2, different facial parts might differ in
requisite computation complexity to localize local landmarks.
This is because each part has its own morphological character-
istics and annotations. For instance, nose usually maintains a
rigid shape, while lips vary a lot in appearance on account of
expression and makeup. To avoid tedious work on customizing
individual network for each facial part, we aim to find an
efficient and effective way. In this section, we adopt group
convolution to generalize replicated subnetworks of conven-
tional global–local cascaded methods, in order to formulate a
representation for joint optimization.

Considering a local network whose layers are equally
grouped, it can be viewed as an integration of replicated
submodules, where a submodule is determined by each layer’s
filters that belong to the same group, as shown in “initial
grouping” in Fig. 3. To be more specific, when all the layers
divide the input tensor and filters into equally sized groups, the
local network turns to conventional parallel submodules that
share the same architecture. When the partition is unbalanced,
the local network allocates different computation complexity
to each facial part. Furthermore, when each layer’s grouping
state differs from each other, the local network equals a set of
heterogeneous submodules.

Dividing input tensor and filters into several nonoverlapping
groups, group convolution conducts computation inside each
group and outputs the concatenated results. Mathematically,
for kth convolution layer who has Gk groups, the filter weights
W k and input Xk are defined as (1) and (2), where ∪ notes
the concatenating along channel and the subscript is group
index. The output is calculated as (3), where ⊗ is the regular
convolution between convolutional filter and input tensor

W k = W k
1 ∪W k

2 ∪ · · · ∪W k
Gk (1)

Xk = Xk
1 ∪ Xk

2 ∪ · · · ∪ Xk
Gk (2)

Y k = (
W k

1 ⊗ Xk
1

) ∪ (
W k

2 ⊗ Xk
2

) ∪ · · · ∪ (
W k

Gk ⊗ Xk
Gk

)
. (3)

In PicassoNet, we set Gk = 4 to localize landmarks on the
left eye, right eye, nose, and mouth. A critical issue emerges:
how to find the optimal grouping state for each layer? As a

matter of fact, the local network with the above generalization
can be further regarded as a supernet that contains various
subnetworks. Hence, how to find the optimal grouping state is
transformed into a network architecture search (NAS) problem,
where layers’ grouping states compose the search space.
We then propose a differentiable grouping search algorithm to
solve the problem, which will be discussed in Section III-C.

C. Grouping Search

We at first interpret the grouping state in mathematics and
then explore an automated search method. For convenience,
we refer to the parameterization of FLGC [34], which para-
meterizes the kth layer’s grouping state with two binary mask
matrices Mk

in and Mk
out in shapes of Ck

in × Gk and Ck
out × Gk ,

where Ck
in and Ck

out denote the kth layer’s input channel and
output channel, respectively. The definitions of Mk

in and Mk
out

are formulated as follows:

Mk
in(i, j) =

{
1, if xk

i ∈ Xk
j

0, if xk
i /∈ Xk

j

i ∈ [
1, Ck

in

]; j ∈ [
1, Gk

]
(4)

Mk
out(i, j) =

{
1, if wk

i ∈ W k
j

0, if wk
i /∈ W k

j

i ∈ [
1, Ck

out

]; j ∈ [
1, Gk

]
(5)

where xk
i represents the i th channel of Xk and wk

i is the i th
filter. When xk

i or wk
i is divided into the j th group, the matrix

value in the corresponding position (Mk
in(i, j) or Mk

out(i, j)) is
activated to 1 and otherwise 0.

In PicassoNet, Mk
out literally equals Mk+1

in . This is because
local regressions are isolated from each other, which indicates
that each layer’s output channel shares an identical division
with its succeeding layer’s input channel; otherwise, features
from disparate facial parts might confuse the prediction.
Therefore, the group convolution in (3) can be rederived
as (6), where � is the Hadamard product and Mk is the
kth layer’s sole parameter to be optimized. In particular,
a convolutional filter in the j th group who is responsible
for the i th output channel, modified with the i th column
of Mk+1(Mk)T , reserves elements whose corresponding input
channels belong to the j th group, while it has other elements
shielded. Therefore, all the possible values of Mk compose the
topology structure space of the kth layer, and combinations
of layers with any possible structure compose the complete
search space

Y k =
(

W k �
(

Mk
out

(
Mk

in

)T
))
⊗ Xk

=
(

W k �
(

Mk+1
in

(
Mk

in

)T
))
⊗ Xk

=
(

W k �
(

Mk+1(Mk
)T

))
⊗ Xk . (6)

Seeking the optimal grouping state for the kth layer is
equivalent to optimize Mk . However, the binary matrix is
not differentiable. As a solution, we optimize a contiguous
substitution M

k
in the same shape and use the Gumbel

softmax [37] to map M
k

to M̂k within binary space as the
approximation of Mk . Note that the softmax relaxation in [34]

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 01,2022 at 05:38:07 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEN et al.: PicassoNet: SEARCHING ADAPTIVE ARCHITECTURE FOR EFFICIENT FACIAL LANDMARK LOCALIZATION 5

is deprecated because softmax-based search might be sensitive
to the initialization of mask matrices, which will be discussed
in the following analysis. The relaxation is described in (7),
where g(i, j) ∼ Gumbel(0, 1) is a random noise subject to the
Gumbel distribution. Also, approximation M̂k(i, j) following
continuous distribution could be updated via backpropagation,
and thus, it is easy to be embedded in network training:

M̂k(i, j) = GSoftmax
(

M
k
(i, j)

)

=
exp

(
M

k
(i, j)+ g(i, j)

)
∑

j exp
(

M
k
(i, j)+ g(i, j)

) . (7)

Why Not Softmax? After the softmax operation, the value
Softmax(M

k
(i, j)) represents the probability that channel i

belongs to group j . Then, the forward computation selects
the group for each channel according to where the maxi-
mum probability appears. However, the maximum position of
Softmax(M

k
(i, )) exactly locates at the maximum position of

M
k
(i, ), which actually eliminates the randomness of prob-

ability. In other words, for channel i , nonmaximum group
choices could hardly be activated and updated, especially when
mask matrices are initialized improperly and network weights
are pretrained deficiently. This nonrandom selection limits the
layer to switch into a very different grouping state and thus
extremely shrinks the search space. On the contrary, Gumbel
softmax introduces Gumbel noise to the selection and practi-
cally conducts sampling according to M

k
(i, j), which means

that the maximum position of GSoftmax(M
k
(i, j)) might not

locate at the maximum position of M
k
(i, j). Therefore, all the

elements of M
k
(i, j) have a chance to be picked and updated

even though some are small. Also, we can simply initialize
the mask matrices as the all-ones matrix.

Directly optimizing M
k

along with W k is unstable because
the weight space might vary a lot as the network architecture
changes. It is essential to fix the architecture when solving
weights. Therefore, we formulate the optimizing object fol-
lowing series works of DARTS [35], as shown in (8), where
Ltrain and Lval are the training and the validation loss that take
turns to be updated, respectively:

min
M̂

Lval
(

M̂
∣∣W)

min
W

Ltrain
(
W

∣∣M̂
)
. (8)

In practical implementation, only network weights are updated
during the first N iterations to warm up the group choices
for each channel. Then, Ltrain and Lval are optimized alter-
nately. The overall optimizing procedure is summarized in
Algorithm 1, where ∇ is the derivation and J is the all-ones
matrix. M̂k activates a topology path that connects the input
channels and the output channels before forward computation.

D. Decomposing Loss

In this section, we introduce the D-Loss. A common phe-
nomenon in facial landmark localization is that some predicted
key points do not fit the physical boundaries well, which can be
observed in Fig. 4. Also, we investigate the problem from the

Algorithm 1 Solving the Optimization Problem in (8)
Input: Xtrain : data from training dataset; Xval : data from

validation dataset;
Output: M

k
, W k : k ∈ [1, K ];

1: Initialize W k ← msra1; M
k ← J ;

2: for i = 0 to N do
3: M̂k ← GSof tmax(M

k
);

4: Update W k by descending ∇WLtrain(W |M) for a batch
of Xtrain ;

5: end for
6: while not converged do
7: M̂k ← GSof tmax(M

k
);

8: Update M
k

by descending ∇M̂Lval(M̂ |W ) for a batch of
Xval ;

9: M̂k ← GSof tmax(M
k
);

10: Update W k by descending ∇WLtrain(W |M̂) for a batch
of Xtrain ;

11: end while
12: return M

k
, W k

Fig. 4. Problem that predictions do not fit the boundary. D-Loss aims to
penalize the distance along the tangential and normal directions rather than
the horizontal and vertical directions. For specific point (e.g., red circled), the
tangential direction is approximated with the ray from the prior point (yellow
circled) to the succeeding point (black circled).

view of loss function’s penalizing directions. The conventional
coordinate regression loss functions (L1, L2, SmoothL1 [14],
Wing [15], and so on) calculate the distance along the x- and
y-axes, which might lead to the phenomenon that some pre-
dicted landmarks shift jointly, though their numerical values
of the conventional loss are tiny. While taking the above issue
into consideration, we attempt to penalize the training loss
in the tangential direction and normal direction of boundaries
(orange lines in Fig. 4). The loss can be formulated as

LD-Loss = αF(pt , pa)+ (2− α)F(pn, pa) (9)

where pa is the ground-truth position of given landmark.
pt and pn are projected positions of prediction po in tangent
and normal of the facial boundary, respectively. F notes the
distance criterion such as SmoothL1. Also, α is the weight to
balance the contribution from two directions. When α equals 1,
D-Loss transforms into conventional F(po, pa). To solve the
boundary fit problem, α is supposed to be set smaller than 1 to
make the model pay more attention to optimize the normal
component. In practice, the tangent direction is approximated
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by connecting pa’s prior point and succeeding point in ground
truth.

D-Loss Versus LUVLi: Kumar et al. [8] also proposed to
decompose the loss along different directions, and however,
it has considerable differences with our D-Loss. First, LUVLi
attempts to locate the landmarks by directly computing the
weighted sum of the activated heatmap, and such a manner
would introduce uncertainty from all directions. While our
D-Loss only focuses on the tangential and normal directions.
Second, LUVLi requires the heatmap to perform the estima-
tion, while the heatmap is not a requisite for our PicassoNet.
Finally, LUVLi pays more attention to the tangential errors,
while we argue that the smaller normal errors have more
impact, since the label on the normal direction is more reliable
due to human’s higher sensitive to the normal direction.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We evaluate the proposed PicassoNet on popu-
lar facial landmark datasets, including 300W [17], WFLW [7],
and AFLW [16]. The numbers of facial landmarks of these
datasets are 68, 98, and 21, respectively; 300W contains
3148 training samples and 689 test samples, which is further
divided into 135 challenge samples and 554 common samples.
WFLW collects 7500 training faces and 2500 test faces from
WIDER Face [39], and its variations in expression, pose,
and occlusion bring many difficulties to existing approaches.
AFLW provides 24 386 faces in total. Following previous
works, we use 20 000 training samples and 4386/1314 test
samples as a full/frontal set.

2) Evaluation Metrics: To align with most of the existing
methods, we compute the NME on each dataset, which is
defined as

NME(pi, p̂i) = 1

N

N∑
i=1

‖pi − p̂i‖2

d
(10)

where pi and p̂i denote the ground truth and the predicted
coordinate, respectively, N is the number of landmarks, and d
represents the normalization distance, which is Inter-Ocular-
Norm (ION) on 300W and WFLW, while for AFLW, d goes to
the width of face bounding box. Further statistics are reported
for comprehensive analysis, including failure rate (FR) and
area under curve (AUC) based on cumulative error distrib-
ution (CED). We set the threshold as 0.1 to calculate these
scores. Besides, we take FLOPs to evaluate efficiency, which
is positively related to practical processing speed on CPU,
which is the mainstream scenario for mobile face alignment
deployments.

3) Implementation Details: To verify the effectiveness
of the PicassoNet under extremely limited computations,
we build the global network and the regional network based
on the inverted residual block (IRB) [31] and downsample
the input image to 96 × 96 and 64 × 64 for the global
network and local network. The overall computations occupy
about 105.69 MFLOPs, which is about one-tenth of state of
the arts. The detailed structures of global network and local
network are reported in Tables I and II. The local network

TABLE I

GLOBAL NETWORK CONFIGURATION. t, c, n, AND s REPRESENT IRB’S
EXPANDING RATIO, OUTPUT CHANNEL, NUMBER OF LAYERS, AND

STRIDE, RESPECTIVELY. MULTISCALE FEATURES ARE EXTRACTED

AND CONCATENATED TO OBTAIN THE FINAL PREDICTION

TABLE II

LOCAL NETWORK CONFIGURATION. PARAMETER g NOTES THE NUMBER
OF GROUPS FOR EACH LAYER, AND THE OTHER PARAMETERS ARE

THE SAME AS THOSE IN TABLE I

has four convolution groups for left eye, right eye, nose, and
mouth (Gk = 4). Note that the partition depends on the natural
human face appearance. Any other partition, such as merging
the two eye areas or making more divisions, will produce
computationally inefficient rectangle area rather than nearly
square area or break the natural face appearance.

We use PyTorch [40] to conduct all the experiments. Torch-
stat2 is applied to analyze computations. Translation, rotation,
scale, and random flip are conducted as data augmentation dur-
ing training. We train the global network using the Adam opti-
mizer with an initial learning rate of 5 × 10−3 for 150 epochs.
The training of regional network includes the search stage and
fine-tuning stage, which is similar to DARTS [41]. For the
search stage, we by turns update grouping mask and network
weights for 500 epochs. Then, the fine-tuning stage uses the
same settings as global network’s training. As for the loss
function, WingLoss is applied as F and α of D-Loss is set
as 0.6.

B. Comparison With Existing Approaches

1) Evaluation on 300W: For experiments on 300W,
we rebalance the training samples according to pose coef-
ficients to tackle extreme pose variations, which is similar
to the PDB process [15]. For global network training, the
random scale range of images is [1.1, 1.16] since dataset 300W
has less profile keypoints; therefore, we set relatively larger

2https://github.com/Swall0w/torchstat
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TABLE III

NME (%) ON 300W COMMON SET, CHALLENGE SET, AND FULLSET

scale to harvest more accurate localizations on eye/nose/mouth
keypoints. The images are randomly rotated within ±16◦ and
translated within ±7 pixels horizontally and vertically. For the
local network training, the scale range, rotation range, and
translation range are [0.9, 1.0], [-6◦, 6◦], and [−3, 3] pixels,
respectively. NME results are reported in Table III, where we
compare the PicassoNet with state-of-the-art methods. With
the lowest computation, the proposed method outperforms the
majority of comparative methods [12], [13], [21], [28], [29],
[45], [48]–[52], and underperforms LAB [7], AWing [26], and
HRNet [22], which costs much more computations. In particu-
lar, FLOPs of 0.106G are lower by more than an order of mag-
nitude among existing approaches. The tiny cost comes from
low-resolution input and concise architecture design (Literally
ResNet18 with 224 × 224 input takes up to 1.82 GFLOPs).

Just as the global network behaves, compact network
without any specialized design could not make precise pre-
dictions. However, the scores go far more accurate when
refined by the local network, which brings little increase
on FLOPs (nearly 10%). The phenomenon verifies the first
assumption we proposed in Section I. It is a simple task
to localize landmarks on a local facial area, and there-
fore, enormous computation cost of refinement stage is
unnecessary.

2) Evaluation on WFLW: WFLW’s training dataset covers
many faces in large poses, and therefore, the pose balancing
is not conducted on WFLW. Due to the diversity of dataset
WFLW, images of WFLW are not scaled for both global
network and local network. For the global network training,
the rotation factor and translation factor are set to ±18◦ and
±3 pixels, while settings of the local network training are the
same as those of 300W local network training. As reported in
Table IV, the proposed PicassoNet achieves the second best
results in terms of NME. In respect of FR and AUC, the
PicassoNet is comparable to Wing-ResNet50 [15] who takes
about 4.12 GFLOPs, which is nearly 38× times larger than our

PicasssoNet. (Here, we neglect the FLOPs variation introduced
by different output dimensions across datasets in the final fully
connected layer.) Fig. 5 exhibits a couple of qualitative results
on WFLW, which intuitively shows the ability of our model.
A visualized accuracy–latency comparison is shown in Fig. 6,
from which we can observe that the PicassoNet obtains a
significantly higher efficiency. Nevertheless, it behaves poor
in the pose subset. We speculate that this is because the
cropped images of large poses lack enough discriminative
information to locate landmarks. The flaw is strengthened in
the cascaded framework where final localization depends on
regional information and global constraints are not captured.
We will analyze the phenomenon in Section IV-F.

3) Evaluation on AFLW: AFLW has 21 annotated land-
marks, excluding contour keypoints. For a fair compari-
son, we align with the mainstream protocol that predicts
19 landmarks and discards ear points. Similar to the experi-
ments on 300W, we conduct pose balancing besides common
data augmentation. The augmentation settings for the global
network training are [1.1, 1.16] for random scale, ±20◦ for
random rotation, and ±3 pixels for random translation. Also,
for the local network training, the corresponding settings
are [0.9, 1.1], ±6◦, and ±5 pixels. Besides, we do not
apply D-Loss because it is inaccurate to approximate tangent
direction with AFLW’s sparse landmark annotation. Table V
lists the evaluation results. The PicassoNet yields the second
best performance on AFLW-Full and the best performance on
AFLW-Frontal.

C. Analysis About Efficiency

To further verify the efficiency benefit of the proposed
PicassoNet, we deploy the model on CPU (Intel Core i7-
8700) to test the inference speed. For comparison, we also
test popular architectures of existing methods, such as HRNet,3

stacked hourglass,4 and ResNet-50. According to Table VI, the
proposed architecture has the least number of parameters and
model size and runs much faster than the other networks, while
the performance is competitive as analyzed in Section IV-
B. To be more specific, PicassoNet runs 6.18×, 10.25×,
and 19.96× times faster than Wing-ResNet50, HRNet, and
AWing on CPU. Besides, when implemented with mobile
framework (TNN5), PicassoNet costs 7.1 ms/image on arm
(Apple A10 Fusion at 2.37 GHz), namely, 140 frames/s, which
is rapid enough to get involved in most of the mobile face
applications.

D. Verification About Grouping Search

To verify that the proposed grouping search indeed allocates
computations for different groups, we analyze the initial archi-
tecture and optimized architecture of the local network. FLOPs
assigned to different groups are reported in Table VII. In the
proposed algorithm, the local network cuts down computations
on nose and pay more attention to the other facial parts,

3https://github.com/HRNet/HRNet-Facial-Landmark-Detection
4https://github.com/protossw512/AdaptiveWingLoss
5https://github.com/Tencent/TNN
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TABLE IV

EVALUATION RESULTS ON WFLW. WE USE BOLD AND UNDERLINE TO MARK THE BEST AND THE SECOND BEST SCORES

TABLE V

NME (%) ON THE AFLW DATASET. “-” MEANS THAT THE CORRESPONDING FIGURE IS NOT REPORTED

Fig. 5. WFLW result visualization. We can observe that most results produced by proposed model are satisfactory, which validates the effectiveness of our
method.

which confirms our analysis above. We further visualize each
layer’s grouping state in Fig. 7, where the grouping state of
FLGC keeps silent, while the proposed algorithm is capable

of finding another architecture. The discoveries confirm our
concern about softmax-based grouping search and demonstrate
the effectiveness of the proposed algorithm.
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TABLE VI

COMPARISON ABOUT MODEL COMPLEXITY AND RUN-TIME EFFICIENCY. FOR AWING AND HRNET, WE USE THE OFFICIAL
IMPLEMENTATIONS TO OBTAIN THE STATISTICS. WE RUN EACH ALGORITHM FOR 200 TIMES TO AVOID JITTERING

Fig. 6. AUC score and inference speed on the WFLW dataset (tested on
i7-8700 at 3.20 GHz). The area of each circle notes FLOPs of the algorithm.
The proposed PicassoNet yields comparable performance with Wing [15] and
DeCaFA [10] and meanwhile runs 6.18× and 8.68× times faster.

TABLE VII

FLOPS FOR EACH GROUP IN THE LOCAL NETWORK. G1, G2, G3, AND
G4 DENOTE THE FLOPS ASSIGNED TO LEFT EYE, RIGHT EYE, NOSE,

AND MOUTH AREA, RESPECTIVELY. THE LARGE FLOPS OF G4
INITIALIZATION COME FROM WHOSE LINEAR LAYER

PREDICTS THE MOST POINTS

TABLE VIII

FLOPS FOR EACH GROUP OF THE LOCAL NETWORK ACROSS DATASET.
G1, G2, G3, AND G4 DENOTE THE FLOPS ASSIGNED TO LEFT EYE,

RIGHT EYE, NOSE, AND MOUTH AREA, RESPECTIVELY

In addition, we count each group’s FLOPs across dataset
to verify the consistency about the searched results. From
Table VIII, we can observe that the searched results are
roughly consistent for all the datasets. The FLOPs of regions
subject to that “mouth > eye+ > nose,” which matches what
the toy experiment indicated in Table II.

To verify the searched result is optimal, we further compare
the proposed grouping search algorithm with manually divided

TABLE IX

COMPARISON AGAINST MANUAL SET AND REDOM SET ON THE 300W
DATASET. MANUAL SETS A AND B ARE DIFFERENT FLOPS SET

FOLLOWING THE RULES INDICATED IN TABLE VIII

TABLE X

LOCAL NETWORK’S NME (%) ON 300W. RI DENOTES WHETHER THE

EXPERIMENT ADOPTS RECOMBINED INPUTS. ALSO, G IS
GROUPING MANNER, AND “×”, “EVEN,” AND “ADAPTIVE”

REPRESENT NO GROUPING, EVEN GROUPING, AND

ADAPTIVE GROUPING, RESPECTIVELY

TABLE XI

EVALUATION OF OPTIMIZING DIRECTIONS ON 300W. WE TRAIN THE

GLOBAL NETWORK VIA OPTIMIZING WING LOSS AND D-LOSS. NMEt
AND NMEn DENOTE THE NME ON TANGENTIAL DIRECTION AND

NORMAL DIRECTION, RESPECTIVELY

groups and random divided groups. The results are reported in
Table IX, where the searched grouping yields the best results
and naturally avoids tedious handcrafts.

E. Ablation Study

We conduct ablation experiments on 300W about employing
a generalized local network and utilizing the grouping search
method. The experiments and scores are listed in Table X. For
experiment without reconstructed inputs or adaptive grouping
search, we train four subnetworks for local stage, which in
fact is the conventional cascaded algorithm. In particular,
each subnetwork takes a quarter as much local network
computations to maintain equal computation complexity. The
results show that combining reconstructed inputs and adaptive
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TABLE XII

NME ALONG ANGLE VARIATION ON WFLW. THE ANGLE IS COMPUTED BY SUMMING OVER PITCH AND YAW

Fig. 7. Grouping states of FLGC and the proposed method. The bars in
four colors denote the channel proportion of individual facial parts in each
layer. From bottom to top, left eye, right eye, nose, and mouth. (a) Initial
grouping state with Gaussian initialization. (b) Grouping state found by FLGC.
(c) Grouping state found by the proposed algorithm.

grouping search obtains the best performance, which verifies
our assumption that submodules of individual facial parts
might differ in requisite computation complexity. Nevertheless,
it is ineffectual to adopt reconstructed input only without
grouping. This is because all the spatial isolated facial parts
are mixed to generate the final output, and the interactions
are misleading to each local regression task. We can also
notice that even grouping of single local network and multiple
independent subnetworks shares a similar performance, which
supports our generalization that models submodules using
convolution groups.

Furthermore, we report the quantitative verification about
the proposed D-Loss in Table XI, where the global network
optimizing D-Loss (α = 0.6) obtains the best performance on
NME. When α = 1, D-Loss behaves the same as Wing loss,
which agrees with the degeneration of D-Loss discussed in
Section III-D. From Table XI, we can also observe that the
normal NME declines when the model penalizes more on the
normal direction.

Fig. 8. Failure cases in WFLW experiments, these weak results reveal that
there are still many challenges standing in the zkeypoint detection field.

F. Failure Analysis

We visualize the landmarks predicted by the proposed
method, most of which are satisfying, as shown in Fig. 5.
While there also exist bad cases, most of them are in extreme
poses, as reported in Fig. 8, which as well can be confirmed
numerically from WFLW experiments. Table XII shows accu-
racy at different pose angles, where NME increases rapidly
when the Euler angle is larger than 30◦. We speculate that the
phenomenon comes from the global network’s weakness about
pose variation and less information in the local area. From this
point of view, utilizing global topological relationship might
help to tackle pose issues.

V. CONCLUSION

In this work, we present the PicassoNet, a facial landmark
localization algorithm with decent accuracy and high run-
time efficiency. Adopting global–local cascaded network as the
baseline, we generalize regional submodules using convolution
groups and integrate them into a single compact network.
The local network receives a single input tensor reconstructed
by different facial parts and decomposes the compound input
during forward inference. A novel grouping search algorithm
is proposed to optimize the structure of the local network,
which adaptively allocates computations for individual facial
parts. In addition, we propose D-Loss to solve the boundary
fit problem of the predicted landmarks. Experiments on three
popular datasets demonstrate the high efficiency and satisfac-
tory performance of the proposed methods.
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